Testing over-identifying restrictions without consistent estimation of the asymptotic covariance matrix

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Heteroskedasticity and Autocorrelation Consistent Estimation of Covariance Matrix

This paper considers spatial heteroskedasticity and autocorrelation consistent (spatial HAC) estimation of covariance matrices of parameter estimators. We generalize the spatial HAC estimators introduced by Kelejian and Prucha (2007) to apply to linear and nonlinear spatial models with moment conditions. We establish its consistency, rate of convergence and asymptotic truncated mean squared err...

متن کامل

Estimation of Covariance Matrix

Estimation of population covariance matrices from samples of multivariate data is important. (1) Estimation of principle components and eigenvalues. (2) Construction of linear discriminant functions. (3) Establishing independence and conditional independence. (4) Setting confidence intervals on linear functions. Suppose we observed p dimensional multivariate samples X1, X2, · · · , Xn i.i.d. wi...

متن کامل

Consistent Parameter Estimation for Conditional Moment Restrictions

In estimating conditional moment restrictions, a well known difficulty is that the estimator based on a set of implied unconditional moments may lose its consistency when the parameters of interest are not globally identified. In this paper, we consider a continuum of unconditional moments that are equivalent to the postulated conditional moments and can identify the parameters of interest. We ...

متن کامل

Asymptotic normality of sample covariance matrix for mixed spectra time series: Application to sinusoidal frequencies estimation

This correspondence addresses the asymptotic normal distribution of the sample mean and the sample covariance matrix of mixed spectra time series containing a sum of sinusoids and a moving average (MA) process. Two central limit (CL) theorems are proved. As an application of this result, the asymptotic normal distribution of any sinusoidal frequencies estimator of such time series based on seco...

متن کامل

Sparse estimation of a covariance matrix.

We suggest a method for estimating a covariance matrix on the basis of a sample of vectors drawn from a multivariate normal distribution. In particular, we penalize the likelihood with a lasso penalty on the entries of the covariance matrix. This penalty plays two important roles: it reduces the effective number of parameters, which is important even when the dimension of the vectors is smaller...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2014

ISSN: 0304-4076

DOI: 10.1016/j.jeconom.2014.04.002